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Final Progress Report 
(ARO Contract DAAG55-97-C-0046) 

1. List of Manuscripts: 
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4. Scientific Progress and Accomplishments: 

• Visit of Peatman to RPI on Aug. 21-23, 1997 to review/set-up high temperature testing 
capability (no data taken). 

• Visit of Peatman to RPI on Oct. 13-16,1997 to perform first high temperature measurements on 
2DI-MESFETs (see data attached). 

• Visit of Peatman to Cornell Nanofabrication Facility on Nov. 3-5 to fabricate new 2-D 
MESFETs in collaboration with RPI personnel. Fabrication is ongoing (see photos). This effort 
has resulted in new recipes for electron beam lithographic definition and ohmic contact lift-off 
and interconnect lift-off. Equipment interruptions and facility closures at Cornell 
Nanofabrication Facility were encountered, however, these should be resolved shortly 

.•High temperature 2-D MESFET model was developed and implemented into the AJJVI-Spice 
code and is now available for modeling the high temperature properties of the 2-D MESFET 
(See data attached). 

•Final report summarizing progress to date and plans for future research (this report). 

5. Technology Transfer: 

None. 

6. Plans for 1998: 

Design, fabricate and test high temperature 2-D MESFET devices (e.g. mixers, op-amps). 
Refine and further validate the temperature model of the 2-D MESFET. 
Perform fundamental studies of 2-D MESFETs including breakdown and and noise properties. 
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Heterodimensional Technology for High Power, High Temperature Electronics 

The Schottky junction between the 3-d metal and the 2-d electron gas is a fundamentally new 
contact of an important new class of semiconductor devices called heterodimensional electronics. 
Due to the two dimensional spreading of the junction electric field, breakdown voltages as high as 50 
V have been demonstrated [1]. The same property leads to higher electrostatic damage immunity. 
Because the conducting channel is sandwiched between two wider band gap layers, the Schottky bar- 
rier is larger than in bulk (homo) Schottky junctions. Note that the channel is degenerately doped (as 
in conventional HFETs), however, the charge control is achieved by changing the width of the con- 
ducting channel, rather than the conductivity, as in the HFET [2]. This means the conducting channel 
remains degenerately doped until pinch-off. This situation is quite different from the case of either the 
conventional MESFET or HFET in which the gate modulates the channel charge density. The het- 
erodimensional 2-D MESFET has unique charge control properties (due to the gate/2-DEG geome- 
try) which have been shown to offer advantages for low power electronics [3]. 

An important advantage of GaAs technology is its ability to operate in a wide temperature range. 
The large band gap of GaAs allows GaAs based ICs to operate at temperatures considerably higher 
than those for silicon based technology (see for example [4], [5]). However, characteristics of con- 
ventional MESFETs, particularly the threshold voltage and the low-field mobility, depend strongly 
on the operating temperature [6], [7]. These temperature effects have to be taken into account when 
designing GaAs MESFET integrated circuits and therefore impose additional burdens on the 
designer. Recently, we demonstrated that the heterodimensional 2-D MESFET exhibits much weaker 
temperature dependence of current-voltage characteristics compared to conventional MESFET tech- 
nologies [8]. Drain current measurements performed at different temperatures illustrate that our 
devices have smaller threshold voltage variations and mobility degradation compared to conventional 
MESFET structures A least square fit to the extracted threshold voltage values gives a temperature 
sensitivity of 0.086 mV/K. In a conventional MESFET the threshold voltage VT changes with the 
temperature T according to VT = VT0 - K(T - TO) where K-1.4 mV/K [7]. The Fermi level shift con- 
tributes only about 25% of the total shift in VT. The much smaller temperature dependence of the 2-D 
MESFET threshold voltage will simplify circuit design and may also lead to a greater integration 
scale for low power digital ICs. 
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Fig. 1. (a) Illustration of the top view of a 2-D MESFET and SEM image of corresponding view, 
and (b) cross section of 2-D MESFET, 2-DI MESFET, and 2-D JFET showing evolution toward 
more manufacturable process. 
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Fig. 2. Schematics (top left) and ID-VDS characteristics of 2-DI-MESFET (ion-implanted 
channel 2-D MESFET). Preliminary high temperature characteristics indicate that the Schot- 
tky/ion-implanted channel junction leakage current limits the output characteristics at above 
about 150°C. Note, the gate leakage current reached the compliance value of 5 |iA, thereby 
limiting further drain current modulation at 225°C. Good high temperature operation will 
require a high temperature-stable Schottky metallization. 



Figure 3. Layout of 2-D MESFET DCFL buffer circuit showing contact scheme (top) and 
individual gates (below). The minimum interconnect widths are nominally 1.5 micron. 



Figure 4. Close-up views of D-mode (top) and E-mode (bottom) gates having channel 
dimensions (L x W where W is the gate-gate spacing) of 0.6 x 0.45 and 0.3 x 0.3 
micrometer respectively. The interconnect metal overlays each device, joining both 
inputs electrically (the interconnect above the channel is separated from the channel by 
about 120 nm of Si02. 
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Figure 5. Scanning electron microscope image of a DCFL 2-D MESFET buffer circuit. 



Model of the Temperature-Dependence of the 2-D-MESFET 

Benjamin Iiiiguez, Jianqiang Lü , Michael Shur and William Peatman 

1) Abstract 

We report the temperature dependence of the parameters of the new physically-based 

model for the 2-D MESFETs. The model is valid for many different configurations, 

including a "single" gate in which the sidewall contacts are biased together, a dual gate 

configuration in which the gates are biased independently, and a multiple gate 

configuration for 3 or more side gates. The model, which has been implemented in the 

circuit simulator AIM- Spice, is suitable for circuit simulation and accurate in all regimes 

of operation. 

2) MODEL 

The drain current of the unified 2-D MESFET is given by the expression: 

where VA is the drain-source voltage, Isate is a unified expression of the saturation 

current, Ä is the output conductance parameter, m is a knee-shape fitting parameter and 

gch is the extrinsic conductance given by: 

8* = i + g«(R.+R<)' (2) 



Seh ~ 
g chi 

l + gcfK+RJ 
(2) 

Here> Schi = qniM„/L, M„ls the electron mobility and n,\s the electron sheet charge 

density per unit length given by: 

n, 

[i+r»;/«.„/r' 
(3) 

where nmax\s the maximum electron sheet density per unit length, y is a fitting parameter 

and n] is given by an approximate solution of the unified charge control model [8]: 

: _ 2cV^* n,= log .    1 1+—exp 
2 

*GS      rT 

lVtt V    '/' th    j 
(4) 

Here, 77 is the subthreshold ideality factor,  Vth  is the thermal voltage and  ceffis 

considered as a capacitance fitting parameter. 

The saturation current is written as [5, 6]: 

 Schi" gte 5 

b+*erJl+gMR. +^+2gMRt +(vste/vL iTV 
(5) 

where   q   is  the  transconductance   expansion   factor,   tc   is  the  transconductance 

compression factor, VL = FSL with Fs being the saturation field. 



The effective gate voltage swing, Vgte, is related to the gate-source voltage, V, and 

the threshold voltage VT as follows: 

V   =V * gte       v th 

rV   -V      v 
' as     " T     I 

Wtl th J 
(6) 

where the parameter^ determines the width of the transition between below and above 

threshold. Please note that (6) represents the equation used in [6] where we replaced Vth 

with r]Vth. 

As explained in [7] the modulation of the effective channel length because of the 

lateral depletion regions strongly affects the characteristics of short-channel devices. The 

expression of the intrinsic channel conductance should be replaced by: 

8, 
<PhM 

chi L + ccd (7) 

where or is a fitting parameter and d,   = 
1 

dep 

dep 

W_-?L 
n s y 

The temperature dependence of the current model is introduced by the parameters Vth, 

VT, ju, TJ and X: 

Vth=kT/q, 

where k is the Boltzmann constant and T is the temperature. 

VT{T)=VT{Tnom)-Tvto(T-Tnom), 

(8) 

(9) 



where VT(Tnom)   is the threshold voltage at room temperature Tnom and Tvt0\s a fitting 

parameter. 

&)=„ ITT—' (10) 
imp " po 

where 

Mimp=ßo{T/TMy
m°, (11) 

Mr=Mi(TM/TYml+/h(Fll/TYm2, (12) 

//0 being a temperature-independent parameter that is identified with the introduced 

value of fi in an AIM-Spice file, and TM, //,, //2, xtmo, xtml and x/m2 fitting 

parameters. By default ju^=ß2=0 and xtmo = xtml = xtml = 0, so we have to give 

values to these parameters in order to account for the temperature dependence of the 

model. 

v(T) = Vo T       T 
(13) 

where % is a temperature-independent parameter that is identified with the introduced 

value of TJ in an AIM-Spice file, and Tn0 and TnX are fitting parameters. 

A(T) = A0 1-— (14) 

where ij0 is a temperature-independent parameter that is identified with the introduced 

value of Ä in an AEVI-Spice file Tx is a fitting parameter. 

If the sheet density, ns, is not introduced explicitly in the AIM-Spice circuit, a 

temperature dependence of it is given by the Schottky barrier, OB (T): 



^s(T) = ^B(Tnom)-^m(T-Tnom), 

n=2s      B 
sWq2' 

(15) 

(16) 

In the following figure, we show plots of drain current versus drain voltage at two 

different temperatures: 27 C and 150 C. 
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